History
In antiquity, jewellery often contains, in the form of chains and applied decoration, large amounts of wire that is accurately made and which must have been produced by some efficient, if not technically advanced, means. In some cases, strips cut from metal sheet were made by pulling them through perforations in stone beads. This causes the strips to fold round on themselves to form thin tubes. This strip drawing technique was in use in Egypt by the 2nd Dynasty. From the middle of the 2nd millennium BC most of the gold wires in jewellery are characterized by seam lines that follow a spiral path along the wire. Such twisted strips can be converted into solid round wires by rolling them between flat surfaces or the strip wire drawing method. Strip and block twist wire manufacturing methods were still in use in Europe in the 7th century AD, but by this time there seems to be some evidence of wires produced by true drawing.
Square and hexagonal wires were possibly made using a swaging technique. In this method a metal rod was struck between grooved metal blocks, or between a grooved punch and a grooved metal anvil. Swaging is of great antiquity, possibly dating to the beginning of the 2nd millennium BC in Egypt and in the Bronze and Iron Ages in Europe for torches and fibulae.
Twisted square section wires are a very common filigree decoration in early Etruscan jewellery.
In about the middle of the 2nd millennium BC a new category of decorative wires was introduced which imitated a line of granules. Perhaps the earliest such wire is the notched wire which first occurs from the late 3rd, early 2nd millennium BC in Anatolia and occasionally later.
Wire was drawn in England from the medieval period. The wire was used to make wool cards and pins, manufactured goods whose import was prohibited by Edward IV in 1463. The first wire mill in Great Britain was established at Tintern in about 1568 by the founders of the Company of Mineral and Battery Works, who had a monopoly on this. Apart from their second wire mill at nearby Whitebrook, there were no other wire mills before the second half of the 17th century. Despite the existence of mills, the drawing of wire down to fine sizes continued to be done manually.
Wire is usually drawn of cylindrical form; but it may be made of any desired section by varying the outline of the holes in the draw-plate through which it is passed in the process of manufacture. The draw-plate or die is a piece of hard cast-iron or hard steel, or for fine work it may be a diamond or a ruby. The object of utilizing precious stones is to enable the dies to be used for a considerable period without losing their size, and so producing wire of incorrect diameter. Diamond dies must be rebored when they have lost their original diameter of hole, but the metal dies are brought down to size again by hammering up the hole and then drifting it out to correct diameter with a punch.
Uses
Wire has many uses. It forms the raw material of many important manufacturers, such as the wire-net industry, wire-cloth making and wire-rope spinning, in which it occupies a place analogous to a textile fiber. Wire-cloth of all degrees of strength and fineness of mesh is used for sifting and screening machinery, for draining paper pulp, for window screens, and for many other purposes. Vast quantities of aluminum, copper, nickel and steel wire are employed for telephone and data wires and cables, and as conductors in electric power transmission, and heating. It is in no less demand for fencing, and much is consumed in the construction of suspension bridges, and cages, etc. In the manufacture of stringed musical instruments and scientific instruments wire is again largely used. Among its other sources of consumption it is sufficient to mention pin and hair-pin making, the needle and fish-hook industries, nail, peg and rivet making, and carding machinery; indeed there are few industries into which it does not enter.
Not all metals and metallic alloys possess the physical properties necessary to make useful wire. The metals must in the first place be ductile and strong in tension, the quality on which the utility of wire principally depends. The metals suitable for wire, possessing almost equal ductility, are platinum, silver, iron, copper, aluminum and gold; and it is only from these and certain of their alloys with other metals, principally brass and bronze, that wire is prepared. By careful treatment extremely thin wire can be produced. Special purpose wire is however made from other metals (e.g. tungsten wire for light bulb and vacuum tube filaments, because of its high melting temperature). Copper wires could be plated with other metals, such as tin, nickel, and silver to handle different temperatures.
In antiquity, jewellery often contains, in the form of chains and applied decoration, large amounts of wire that is accurately made and which must have been produced by some efficient, if not technically advanced, means. In some cases, strips cut from metal sheet were made by pulling them through perforations in stone beads. This causes the strips to fold round on themselves to form thin tubes. This strip drawing technique was in use in Egypt by the 2nd Dynasty. From the middle of the 2nd millennium BC most of the gold wires in jewellery are characterized by seam lines that follow a spiral path along the wire. Such twisted strips can be converted into solid round wires by rolling them between flat surfaces or the strip wire drawing method. Strip and block twist wire manufacturing methods were still in use in Europe in the 7th century AD, but by this time there seems to be some evidence of wires produced by true drawing.
Square and hexagonal wires were possibly made using a swaging technique. In this method a metal rod was struck between grooved metal blocks, or between a grooved punch and a grooved metal anvil. Swaging is of great antiquity, possibly dating to the beginning of the 2nd millennium BC in Egypt and in the Bronze and Iron Ages in Europe for torches and fibulae.
Twisted square section wires are a very common filigree decoration in early Etruscan jewellery.
In about the middle of the 2nd millennium BC a new category of decorative wires was introduced which imitated a line of granules. Perhaps the earliest such wire is the notched wire which first occurs from the late 3rd, early 2nd millennium BC in Anatolia and occasionally later.
Wire was drawn in England from the medieval period. The wire was used to make wool cards and pins, manufactured goods whose import was prohibited by Edward IV in 1463. The first wire mill in Great Britain was established at Tintern in about 1568 by the founders of the Company of Mineral and Battery Works, who had a monopoly on this. Apart from their second wire mill at nearby Whitebrook, there were no other wire mills before the second half of the 17th century. Despite the existence of mills, the drawing of wire down to fine sizes continued to be done manually.
Wire is usually drawn of cylindrical form; but it may be made of any desired section by varying the outline of the holes in the draw-plate through which it is passed in the process of manufacture. The draw-plate or die is a piece of hard cast-iron or hard steel, or for fine work it may be a diamond or a ruby. The object of utilizing precious stones is to enable the dies to be used for a considerable period without losing their size, and so producing wire of incorrect diameter. Diamond dies must be rebored when they have lost their original diameter of hole, but the metal dies are brought down to size again by hammering up the hole and then drifting it out to correct diameter with a punch.
Uses
Wire has many uses. It forms the raw material of many important manufacturers, such as the wire-net industry, wire-cloth making and wire-rope spinning, in which it occupies a place analogous to a textile fiber. Wire-cloth of all degrees of strength and fineness of mesh is used for sifting and screening machinery, for draining paper pulp, for window screens, and for many other purposes. Vast quantities of aluminum, copper, nickel and steel wire are employed for telephone and data wires and cables, and as conductors in electric power transmission, and heating. It is in no less demand for fencing, and much is consumed in the construction of suspension bridges, and cages, etc. In the manufacture of stringed musical instruments and scientific instruments wire is again largely used. Among its other sources of consumption it is sufficient to mention pin and hair-pin making, the needle and fish-hook industries, nail, peg and rivet making, and carding machinery; indeed there are few industries into which it does not enter.
Not all metals and metallic alloys possess the physical properties necessary to make useful wire. The metals must in the first place be ductile and strong in tension, the quality on which the utility of wire principally depends. The metals suitable for wire, possessing almost equal ductility, are platinum, silver, iron, copper, aluminum and gold; and it is only from these and certain of their alloys with other metals, principally brass and bronze, that wire is prepared. By careful treatment extremely thin wire can be produced. Special purpose wire is however made from other metals (e.g. tungsten wire for light bulb and vacuum tube filaments, because of its high melting temperature). Copper wires could be plated with other metals, such as tin, nickel, and silver to handle different temperatures.
No comments:
Post a Comment